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Electric Polarizability and Magnetic
Susceptibility of Small Holes

in a Thin Screen

ROBERT L. GLUCKSTERN, RUI LI, AND RICHARD K. COOPER

Abstract — Frequently in the generation and transmission of RF waves,
different regions of excitation are coupled by a small aperture iu a

common plane wall. When the dimensions of the aperture are small

compared to the wavelength, the effect of the aperture can be described by

an electric polarizability, X, and magnetic susceptibilities +x. and + ,Y,

which are defined in static terms. Specific results for x, +Y., and ~;,y

have been derived by Bethe [1] and Colfin [2] for circular and elliptical
holes. We have derived integral equations for the field components in the

plane of the hole and variational forms for x, VYY, and $,,, in terms of

these field components. We have also shown that the polarizability and

(diagonalized) susceptibility are connected by l/x = l/&yx + I/I) P,, a

relation which does not appear in any of the related literature which we

have examined for an aperture of general shape.

I. INTRODUCTION

I N THE DESIGN of RF structures for use in the gener-

ation and propagation of microwaves there are many

applications where two or more regions are coupled through

a hole in a thin metallic screen. When the largest dimen-

sion of the hole is small compared to all other significant

lengths, such as the RF wavelength, the radius of curvature

of the wall at the hole, or the distance to the nearest

important discontinuity, it is well known (see, for example

[1]-[3]) that the electromagnetic properties of the hole can

be represented by an induced electric moment, perpendicu-

lar to the plane of the hole, and by an induced (vector)

magnetic moment, in the plane of the hole.

In this paper we develop methods to solve the electro-

static and magnetostatic problems in orde~ to obtain re-

sults for x, the electric polarizability, and ~, the magnetic

susceptibility, of a hole of general shape in a plane m~tallic

screen. In the process, we discover that x and + are

simply related to one another, a fact that does not seem to

have been noted previously.

II. COUPLING INTEGRAL

Let us consider a cavity of general shape whose bound-

ary contains a small hole, and expand the fields in terms of

the orthonormal complete set [4] of field functions in the
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absence of the hole. 1 These modes are solutions of the

equations

v x z.,(s) = kmznl(i) v x in,(i) = kw,znl(i)

(1)

and satisfy the orthonormality condition

/
dvZm. ZV,( =

/
dv~fit. ~P2 = 8mW,, (2)

where kn,c/2 n ar~ the eigenfrequencies of the cavity. In

addition, .ZW,and h ~ satisfy the usual boundary condition

at a metal surface:

Zmxii=o Zw,.z=o. (3)

The actual steady-state fields ~(=) e lti’ and ~(~) e ‘“Z in

the presence of the hole satisfy Maxwell’s equations

v x E(z) = – jup@x) (4)

v x ti(i) = juti(f) (5)

where c and p are the permittivity and permeability of the

cavity medium.

It is possible to show that the fields in the interior of the

cavity can be expressed as an integral over the electric field

in the plane of the hole (see, for example, [3] and [4]).

Specifically$ we can write

kmJm
i(i) = zzmk2_k2

?-?1 m

(6)

(7)

where k = a/c, corresponding to the vacuum values of c

and p, and where the coupling integral over the area of the

hole is given by

J
J~= dS[%~X~~). (8)

Some comments are necessary at this point. There are

convergence problems if (6) and (7) are used in the vicinity

of the hole. For example, if (6) is used in the plane of the

lIt should be noted that the set of functions that we are using for the
electric field n complete only in the absenceof charge.
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Fig. 1. Electrostatic and magnetostaticfields near the hole.

hole, ~(x~ will (incorrectly) be normal to the hole surface

since ;~l X 2 = O within the hole. Because of this, the way

in which we shall proceed is to evaluate the normal compo-

nent of E( X7 in the vicinity of the hole using (6) and

subsequent y use this normal component as the “far field”

in treating the “electrostatic” problem in the immediate

vicinity of the hole. Similar considerations apply to (7), to

the tangential magnetic field in the vicinity of the hole,

and to the subsequent “ magnetostatic” analysis in the

immediate vicinity of the hole. Clearly this procedure is

valid only if the hole dimensions are small compared to the

wavelength and all other significant dimensions. We will

therefore write, for the normal electric field and the tan-

gential magnetic field in the vicinity of the hole,

EAZ(0) = ~emz(0) ~~~J~2
m m

zofiA,(o) = jk~z’m(o) Jk2
m m

(9)

where the subscript xl refers to cavity A, (0) stands for the

coordinates of the hole center, z is perpendicular to the

plane of the hole, t means parallel to the plane of the hole,

and ZO = fi = 120 v 0 is the impedance of free space.

We now consider two general cavities, A and B, coupled

by the same hole. The above analysis applies as well in

cavity B and we obtain

ZJ7JO) = jk~zl, (o) + . (lo)
1 I

Here the summation index m applies to cavity A, the

summation index 1 applies to cavity B, and

JJ[= – ds;.~xi[ (11)

where – Z is the outward normal to cavity B. In Fig. 1 we

show the situation in the immediate vicinity of the hole,

where the xy plane can be considered as extending to

+ cc. We have dropped the reference to the hole coordi-

nates (0). We must now determine the x and y compo-
nents of ~(~) for z = O to be used in Eqs. (8) and (11).

These will clearly not change if we antisymmetrize the field

configuration by subtracting the fields

EBZ + EAZ iiBt + 17A,

2 2

I-Eii .
B ~Ht

Fig. 2. Antisymmetrized electric and magnetic fields near the hole

in all space, since neither upset the boundary conditions

on the metal screen; nor will the cle:ired x and y compo-

nents of ~ or z component of H be changed by the

subtraction. The resulting antisymmetrized field configura-

tion is shown in Fig. 2, where

EAZ – E,z 17Bt – 17At
E=

2
A:=

2“

As we shall see, the values of J~ and J,, which have not

been changed by the subtraction of ~he constant fields, are

necessarily proportional to E and Hr.

III. EVALUATION OF THE COUIPLING INTEGRAL FOR

A SMALL HOILE

Let us consider the integral

and expand h ~ (Y) in a Taylor series in ,7 to obtain

where

J:=/z~,(0)ffdxdyEX( x,y)–lzw,X(0)//dxdyEy( x,y)

(14)

J;= %(0)jjdxdyxEy(x, Y)

—~(0)j/dxdyyEp(x, y). (15)

Here x = y = O is an arbitrary “center” of the hole. In the

Appendix we show that J; corresponds to an electric

dipole moment and J; to a malgnetic dipole moment.

Specifically, we obtain

where x and + are the electric polarizabilit y and magnetic

susceptibility of the hole. The quantity ~ is treated as a

tensor because tit is not necessari~y parallel to the symme-

try axes of the hole. We shall later show that the x and y
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axes can be oriented so that ~ is diagonal, with compo-

nents tYY and $Yr in the x and y directions respectively.

The definition of x given in the Appendix is

x=:Jfd.dY%Y) (17)

where Q ( x, y ) is the solution of the electrostatic problem

with constant “far fields” + E7 as s~wn in Fig. 2. Simi-

larly, the magnetic susceptibility, I), 1s defined by

J.i+....% + +.Y, H,= x~xf$~z(x, Y) (18)

Jl+y.y~, + 4Y,)H, = Y~x@HJx Y) (19)

where H: ( x, y) is the solution of tJhe magnetostatic prob-

lem with constant “far fields” + H,.

IV. MAGNETIC SUSCEPTIBILITY

A. Integral Equation

For reasons that will become clear later, we will first

derive equations for the magnetic susceptibility. We will

first analyze the problem where HX = 1, HY = O, in which

case we can write the scalar magnetic potential, which

must be an odd function of z, as

( JJdkdlb(k,,)e’.+2’y-elzl]‘k(x, y>z)=+ x–

where the i corresponds to z >0, and where

The z component of H, at z = O is

H=(., y,O) -g(;) =Jdiie’;’%b(;)

where

~= 1%i- J~ ~=~+Jj.

(20)

2= V+.

(21)

(22)

Since H,= O on the metal, g(x, y) vanishes everywhere

except in the hole, and (21) can be inverted to yield

d(d)= +JH~WOe-l’” (23)

The continuity of V/(x, y, z) (which is odd in z) at z = O

requires that

J
d&e’;”7b ( 7) = x (24)

be satisfied within the hole. Combining (23) and (24) leads

to the integral equation

/d~g(F’)~(F~)=x (25)
[r

where the kernel

is symmetric in F and F’, and where we have used the

value of the integral of the zero-order Bessel function:

~mdtJo(t)=l (27)

Before proceeding further, let us treat the problem where

H:= O, HY~ = 1. A parallel analysis for

Hz(x, y,o)= h(7) (28)

leads to the integral equation

~d~k(~)~(~~)=y (29)

where K( 7, F’) is the same as that in (26). We now have

*XX = ~di?xg(F) +,. = ~d~yg(~)

(30)

i//Xy = /dFxh (7) ~}) = jd7”h (7’) .

B. Diagonalization of $,~

If we multiply (25) by h(7) and integrate over F we

obtain

+xy=~dF~d7h(F)g( 7) K(F, P). (31)

In a similar way,

$,x=~d7/dPg(7)h( 7) K(F,P). (32)

Since K(Z 7’ ) is symmetric in F and P we have

+Xy = +.,., (33)

and the 2 x 2 matrix in (30) can be diagonalized; that is, a

set of orthogonal axes x’, y‘ can be found in which a field

along the x‘ or y’ axis induces a magnetic moment along

the same axis. We now assume that x and y have been

chosen to be these “diagonalized” axes and have for the
susceptibilities

*XX = ~d~xg(~) $Yv = ~d~yh (7) +x, = +vx = o.

(34)

V. ELECTRIC POLARIZABILITY

For an asymptotic field ~ Eii as shown in Fig. 2 we can

write the electrostatic potential, which is an even function

ofz, for E=las

@(x, y,z)=\zl+ ~d7e1;”7-o1’1a( 6’). (35)



GLUCKSTERN ef d.: ELECTRIC POLARIZABILITY AND MAGNETIC SUSCEPTIBILITY 189

‘hce the potential vanishes on the metal surface we have,

over the surface of the hole,

O(X, y,O) -f(F) = JdF’ei7’Zz(F) (36)

and its inverse

(37)

Continuity of E,(x, y, O) within the hole requires that

which is equivalent to E,(x, y, O) = O. If we proceed as

before to substitute (37) into (38), we obtain the integral

equation

Jdm’)i(v’)=1 (39)

where

(40)

It is not hard to show that

I?(F’,F’) = –V+K(7,7”) =–V;K(F,7’) (41)

with K( 7, F’) given in (26), is highly singular at F= 7“.

This mathematical difficulty has undoubtedly come about

because of the interchange of order of integration between

7’ and F in obtaining (39). As an attempt to repair the

problem, we rewrite (40) as

p’w’)v,ww’>n =1 (42)

which would be satisfied by

where a and P are to be determined later, subject to the

condition

a+~=l. (44)

If we now integrate the left side of (43) by parts and take

~ = O along the boundary of the hole, we find

~

af
— dZ’ZK(F,7’)=ax

J

df
– dP’—

ay’
K(F, F’)=~y

(45)

(46)

in which there is no longer a problem with the singularity
at F= F’. Equations (45) and (46) are now identical to (25)

and (29), from which we conclude that

af(x, y)

ax =
- W(X7 Y) (47)

df(x, y)

C’3y
=-pl(x, y). (48)

If we now multiply (47) by x, (48) by y, and integrate by

parts on the left side, we find

x= J@~Yf(x!Y) =~/px~Yw(~Y)

=B/px~YYNx>Y)

from which we can write

@x. = b+.,, = x-

Equations (44) and (50) lead directly to

(49)

(50)

(51)

from which one obtains the general relation between the

electric and magnetic susceptibilities

111
— =—+—–.
x +Xx $,”y ~

(52)

As mentioned earlier, $XX and IJJYYare the components of
the diagonalized susceptibility.

Exact expressions have been obtained for the polariz-

ability and susceptibilities of an elliptical hole (see, for

example [2]). These can be written as

1/2
1 3 2T

J +(
COS2{) sinz $

.— d —. +—
)

(53)
x 8rrab o az bz

COS2 +

sinz #

1 3 277

/+ d —
b2

g=— 8~ab o

(

,,2 (55)
COS2+ sin2 +
—— —

a2
+ bz

)

where the integrals can readily be expressed in terms of

complete elliptic integrals of the first and second kinds.

Here a and b are the semimajor and semiminor axes of

the elliptical hole. The validity of (52) in this case is

obvious. Corresponding expressions can easily be obtained

for a circular hole, where 4.YX= #JYJ,= 2x.

To complete this section we alsc} give variational forms

for +Xx and ~YY which can be used to obtain reasonably

accurate susceptibilities with only approximate values of
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g( F’) and h ( F’). Specifically, we have

, @J~%(~)g(~)~(~>~)
(56)

+.,., =
[,dFxg(i’)]

, pqww)m’)
+= [pm]’

(57)
yv

where g(F) = g(x, y) and h(~) = h(x, y) are trial func-

tions and where K( F F’) is defined in (26). The equivalent

evaluation of the polarizability is obtained by using (52)

with the variational values of ~jXl and $jYl obtained from

(56) and (57). If the boundary curve in the x, y plane is

defined by

p(x, v)=po (58)

then trial functions satisfying the proper edge conditions

can be taken to be

a
( -P(X> Y))’”dx, .v) =~ Po (59)

h(x,. v)=; (po–p(x,y))l”. (60)

VI. SUMMARY

In Section II we showed that the fields inside a cavity

with a hole can be written in terms of a coupling integral

involving the tangential electric field in the plane of the

hole. For a hole whose dimensions are small compared to

the wavelength, this coupling integral was separated in

Section III into an electric term, proportional to the (scalar)

polarizability of the hole, and a magnetic term, propor-

tional to the (vector) susceptibility of the hole.

In Sections IV and V we developed integral equations

for the determination of these “static” geometrical param-

eters. These equations can be solved exactly for circular

and elliptical shape (see, for example, [1] and [2]) but only

approximately for other shapes (see, for example [5]). In

separate work [6] we discuss in detail variational forms for

these parameters which can be used to obtain reasonably

accurate values of these parameters with only very approx-

imate trial functions.

Our main result is the derivation of what appears to be a

new relation between the electric polarizability and the

(diagonalized) magnetic susceptibility for a hole of general

shape, namely

111
—

x=G+z-
(61)

This relationship can also be stated as

x
-l= Tr(~-l) (62)

prior to diagonalization of ~.

The validity of (61), which is readily confirmed for the

elliptical hole, was noted in that case by Kleinman and

Senior [7]. They also quote approximate numerical results

for other shapes [8]-[10], which do not quite satisfy (61).

We believe that the derivation of (61) is correct for any

shape hole and therefore believe that the computed results

are somewhat less accurate than previously estimated.

APPENDIX

In Section III, we separated the coupling integral of (8)

into two terms, given in (14) and (15) and reproduced

here:

J:= lzmJo)fJdxdyEx(x, y)– hm.(o)J-JdxdYE.,(x, y)

(Al)

ah
J:= &(o) fJdxdyxE..(x, y)

+ *(o) JpxdYYEJx,Y)

ahmx
- ~(o)jjdxdyxq(x, y)

-%(o) J@dYYEy(x>Y). (A2)

Here x = y = O is an arbitrary “center” of the hole. If we

use the electrostatic approximation

E(i) =–v@(i) (A3)

it is easy to show that

~/~x~Y~.(x, Y) = –~dy@(boundary) = O (A4)

since the electrostatic potential vanishes on the boundary.

Similarly

J./
dxdyl$(x>y) =0 (A5)

JJ~x~YY&(x,Y) =Jpdyxqx,y) =0 (A6)

and, by an integration by parts,

/~dXdYXEX(X, Y)=~~dXdYYE,(X,Y)

‘/~dxdY@(xY)- (A7)

We therefore can write, using (l),

( ahmx
J;= %_—.—

ax )Iiay O

dxdy@(x, y)

=kmem, (0)//dx~v@(x, y). (A8)

The electrostatic approximation to J: vanishes so Jhat

we must consider the time-dependent behavior of E to

obtain a suitable expression for J:. If we start with the
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integrals

A4x =
Jf

dxdyxllz(x, y) MY=
/./ ~x~YY%(~> Y)

(A9)

and use (4), we find

Integration by parts leads to

1
MY=–——

JJ
dxdyEX

jup

(A12)

where we have used the fact that

(EXdx+EYdy) =0 (A13)

on the boundary of the hole. Thus we find from (Al) that

J;= - jw[lrm.(o)M. + ~~y(o)My]

= –jap~/dxdyHZ(x, y) [xlz~X(0) +y/z~Y(0)]. (A14)

It is clear from the symmetry in Fig. 2 that ET=(x, y) is

the only nonvanishing component of R in the hole for

z = O. We then see from (AS) and (A14) that ~~ will be

p~oportional to fiH and that J; will be proportional to

E‘. We therefore write for, Jn = J:+ J:,

Jm = k~~Z~. l?H– jtip;~. ~ . ~H (A15)

where x and ~ are the electric polarizabil~ty and magnetic

susceptibility of the hole. The quantity ~ IS treated as a

tensor because fiH is not necessarily parallel to the sym-

metry directions of the hole. It was shown that we can

orient the x and y axes so that ~ is diagonal, with

components *,X and + “y in the x and y directions.
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