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Electric Polarizability and Magnetic
Suscept1b111ty of Small Holes
in a Thin Screen

ROBERT L.GLUCKSTERN, RUI LI, anp RICHARD K. COOPER

Abstract —Frequently in the generation and transmission of RF waves,
different regions of excitation are coupled by a small aperture in a
common plane wall. When the dimensions of the aperture are small
compared to the wavelength, the effect of the aperture can be described by
an electric polarizability, x, and magnetic susceptibilities i and ¥,
which are defined in static terms. Specific results for x, ¢.,, and xpw
have been derived by Bethe [1] and Collin [2] for circular and elliptical
holes. We have derived integral equations for the field components in the
plane of the hole and variational forms for x, ¢, and ¢  in terms of
these field components. We have also shown that the polarizability and
(diagonalized) susceptibility are conmected by 1/x=1/¢ ., +1/¢,,, a
relation which does not appear in any of the related literature which we
have examined for an aperture of general shape.

I. INTRODUCTION

N THE DESIGN of RF structures for use in the gener-

ation and propagation of microwaves there are many
applications where two or more regions are coupled through
a hole in a thin metallic screen. When the largest dimen-
sion of the hole is small compared to all other significant
lengths, such as the RF wavelength, the radius of curvature
of the wall at the hole, or the distance to the nearest
important discontinuity, it is well known (see, for example
[1]-[3]) that the electromagnetic properties of the hole can
be represented by an induced electric moment, perpendicu-
lar to the plane of the hole, and by an induced (vector)
magnetic moment, in the plane of the hole.

In this paper we develop methods to solve the electro-
static and magnetostatic problems in order to obtain re-
sults for x. the electric polarizability, and 1,D the magnetic
susceptibility, of a hole of general shape in a plane metallic
screen. In the process, we discover that x and 1[/ are
simply related to one another, a fact that does not seem to
have been noted previously.

II. CouPLING INTEGRAL

Let us consider a cavity of general shape whose bound-
ary contains a small hole, and expand the fields in terms of
the orthonormal complete set [4] of field functions in the
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absence of the hole.! These modes are solutions of the

equations

K (%) v X h,

v >< e_)m()?) ) kﬂl m(

(1)

and satisfy the orthonormality condition

/ e, T, (2)

where k¢ /277 are the eigenfrequencies of the cavity. In
addition, e, and h satisfy the usual boundary condition
at a metal surface.

g Xi=0 h-7=0. (3)

The actual steady-state fields E(Z)e’" and H(X)e’ in
the presence of the hole satisfy Maxwell’s equations

v X E (%) =~ jonfl(%) (4)

Vv X H(X) = jweE(X) (5)

where € and p are the permittivity and permeability of the

cavity medium.
It is possible to show that the fields in the interior of the
cavity can be expressed as an integral over the electric field

in the plane of the hole (see, for example, [3] and [4]).
Specifically, we can write

= fdvl_{mﬁm/ =8,

s k,.J
E(%) = T () 5™ ©
H(X) —]wez}zm(x k2 (7

m

where k = w/c, corresponding to the vacuum values of e
and p, and where the coupling integral over the area of the
hole is given by

(8)

Some comments are necessary at this point. There are
convergence problems if (6) and (7) are used in the vicinity
of the hole. For example, if (6) is used in the plane of the

g, = [as(i-Ex,).

'It should be noted that the set of functions that we are using for the
electric field 1s complete only in the absence of charge.
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hole, E| (x) will (incorrectly) be normal to the hole surface
since €,, X 77 =0 within the hole. Because of this, the way
in Wthh we shall proceed is to evaluate the normal compo-
nent of E(X) in the vicinity of the hole using (6) and
subsequently use this normal component as the “far field”
in treating the “electrostatic” problem in the immediate
vicinity of the hole. Similar considerations apply to (7), to
the tangential magnetic field in the vicinity of the hole,
and to the subsequent “magnetostatic” analysis in the
immediate vicinity of the hole. Clearly this procedure is
valid only if the hole dimensions are small compared to the
wavelength and all other significant dimensions. We will
therefore write, for the normal electric field and the tan-
gential magnetic field in the vicinity of the hole,

km']m
EA:(O) = Zemz(o) kT——k_Z-

Zot(0) = kT 0) 157 ©)
where the subscript A4 refers to cavity A, (0) stands for the
coordinates of the hole center, z is perpendicular to the
plane of the hole, ¢ means parallel to the plane of the hole,
and Z,=/p /e =120« © is the impedance of free space.

We now consider two general cavities, A and B, coupled
by the same hole. The above analysis applies as well in
cavity B and we obtain

Ep.(0) = ;e/z(o) P —

ZOﬁBt(O) szhlt 0) k2 (10)
Here the summation index m applies to cavity A, the

summation index / applies to cavity B, and

(11)

where — 7 is the outward normal to cavity B. In Fig. 1 we
show the situation in the immediate vicinity of the hole,
where the xy plane can be considered as extending to
+ co. We have dropped the reference to the hole coordi-
nates (0). We must now determine the x and y compo-
nents of E (X) for z=0 to be used in Egs. (8) and (11).
These will clearly not change if we antisymmetrize the field
configuration by subtracting the fields

—fdsﬁ-f)(l?,

EBZ + EAz ﬁBt + ﬁAt
2 2
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Fig. 2. Antisymmetrized electric and magnetic fields near the hole.

in all space, since neither upset the boundary conditions
on the metal screen; nor will the desired x and y compo-
nents of E or z component of H be changed by the
subtraction. The resulting antisymmetrized field configura-
tion is shown in Fig. 2, where

EAz - EB:
2 )
As we shall see, the values of J,, and J,, which have not

been changed by the subtraction of the constant fields, are
necessarily proportional to E and H

E=

ITII. EVALUATION OF THE COUPLING INTEGRAL FOR
A SMALL HOLE

Let us consider the integral

%:]aﬁﬂ;wigm (12)
and expand A «{X) in a Taylor series in X to obtain
Tn= I3+, (13)

where

=1, (0) [ [ dxdy E,(x. )= 1, (0) [ [ axadv E,(x, y)

(14)
Q=%f®”]m@wymw
"’jj; (0) [ [ dxdyyE,(x, »)
_8Z:xm)[[dwbeAx,y)
) [[axdyyE,(x.3). (19

Here x = y = 0 is an arbitrary “center” of the hole. In the
Appendix we show that J! corresponds to an electric
dipole moment and J? to a magnetic dipole moment.
Specifically, we obtain

J=kyxe, (0)E — joph,, (0)-4-H  (16)

where x and $ are the electric polarizability and magnetic
susceptibility of the hole. The quantity ¢ is treated as a
tensor because Ift is not necessarily parallel to the symme-
try axes of the hole. We shall later show that the x and y
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axes can be oriented so that $ is diagonal, with compo-
nents ¥, and ¥, in the x and y directions respectively.
The definition of x given in the Appendix is

X= é—ffdxdyd)(x,y) (17)

where ®(x. y) is the solution of the electrostatic problem
with constant “far fields” + En as shown in Fig. 2. Simi-
larly, the magnetic susceptibility, ¢, is defined by

Vo H Y Ho= [[xaxdy B (x.p)  (18)

Il"y,\*Hx + 11))*171{)' = /fdedsz(xﬂ y) (19)

where H_(x, y) is the solution of the magnetostatic prob-
lem with constant “far fields” + H

1V. MAGNETIC SUSCEPTIBILITY
A. Integral Equation

For reasons that will become clear later, we will first
derive equations for the magnetic susceptibility. We will
first analyze the problem where H =1, H, =0, in which
case we can write the scalar magnetic potential, which
must be an odd function of z, as

Y(x,y,z) =% (x ~ [ [ dkaib (i, D) eo Vi =P
(20)

+ corresponds to z 2 0, and where H=vV.
The z component of H, at z=0is

where the +

H.(x,3.0) = 5(F) = [dee™ob(s)  (21)

where

F=ik+ ji =ix + jy. (22)
Since H_=0 on the metal, g(x, y) vanishes everywhere

except in the hole, and (21) can be inverted to yield

1 L
ab (o) = medrg(r)e_“’". (23)
The continuity of ¥(x, y, z) (which is odd in z) at z=0
requires that

[doe™ () = x (24)
be satisfied within the hole. Combining (23) and (24) leads
to the integral equation

f”d?’g(

PVK(F,7) = x (25)

where the kernel

f_ 17 (F—77)

o 1
—E/o odo(ol7=7")) = 2nff— 7|

is symmetric in ¥ and 7’, and where we have used the
value of the integral of the zero-order Bessel function:

/Ooodtjo(t) =1.

Before proceeding further, let us treat the problem where
Hf=0, H=1. A parallel analysis for

H,(x,y.0)=h(F)

K(F,7)

(26)

(27)

(28)

leads to the integral equation
[arn(F)K(F7) =y
where K(7,7") is the same as that in (26). We now have

Vo= [ dFxg(F) v,.= [drye(F)

= [ dFxn(7)

(29)

(30)
v, = [ dFvh(7)

B. Diagonalization of ¥, ,
If we multiply (25) by A(F) and integrate over 7, we

obtain

v,,= [dF [arh(P)g(FIK(FF).  (31)
In a similar way,

V.= [dF [aFg(ARFIKFF).  (3)

Since K(r, ") is symmetric in 7 and 7 we have
Yoy = ¥y (33)

and the 2 X2 matrix in (30) can be diagonalized; that is, a
set of orthogonal axes x’, y’ can be found in which a field
along the x’ or y’ axis induces a magnetic moment along
the same axis. We now assume that x and y have been
chosen to be these “diagonalized” axes and have for the
susceptibilities

%ffd?xg(?) ¢,‘~_v=fd7yh(f’)

Iny = ¢_vx =0.

(34)

V. ELECTRIC POLARIZABILITY

For an asymptotic field 4+ En as shown in Fig. 2 we can
write the electrostatic potential, which is an even function
of z, for E=1 as

®(x,y,2) =|zl+ [dFeT T a(5).  (35)
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Since the potential vanishes on the metal surface we have,
over the surface of the hole,

O(x, y,0) = f(7) = fdoew 2(&) (36)

and its inverse

1 a
a(8)=7— fHd7e—'€-7(?). (37)

Continuity of E,(x, y,0) within the hole requires that

f die™sa(5) =1 (38)
which is equivalent to E,(x, y,0)=0. If we proceed as
before to substitute (37) into (38), we obtain the integral
equation

[ar (7 R(F7) =1 (39)
where
K(F,7) = ——fdaae"’ 7=, (40)
It is not hard to show that
K(F, 7)) =-V2K(F, /") =—V2K(F, 7)) (41)

with K(7,7”) given in (26), is highly singular at F=7".
This mathematical difficulty has undoubtedly come about
because of the interchange of order of integration between
¥’ and ¢ in obtaining (39). As an attempt to repair the
problem, we rewrite (40) as

[d71(

which would be satisfied by

)V, V- K(F, 7)) =1 (42)

[@F f(F)v, R(F 7)) =iax+ By (43)

where « and B are to be determined later, subject to the
condition
a+B=1. (44)

If we now integrate the left side of (43) by parts and take
=0 along the boundary of the hole, we find

—fd"'

—fd —K(* ) =By

K(r ') =ax (45)

(46)

in which there is no longer a problem with the singularity
at 7= 7". Equations (45) and (46) are now identical to (25)
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and (29), from which we conclude that

—az%;—y—)=—ag(x,y) (47)
(x,y) _
0 —Bh(x, y). (48)

If we now multiply (47) by x, (48) by y, and integrate by
parts on the left side, we find

x= [[axdyf(x,y) = o[ dxdyxg(x, y)
=B [ axdyyn(x, y)

from which we can write

(49)

alpx)(, = ﬁlpyy = X‘ (50)
Equations (44) and (50) lead directly to
IP XX
q=—2 po—Y=_ (s
¢xx + \Pyy ‘Pxx + ‘I’yy

from which one obtains the general relation between the
electric and magnetic susceptibilities

L + ! (52)
X - \Pxx 11/_11); . )

As mentioned earlier, ¢, and ,, are the components of
the diagonalized susceptibility.

Exact expressions have been obtained for the polariz-
ability and susceptibilities of an elliptical hole (see, for
example [2]). These can be written as

1 3 on cos?y  sin*y V2
— d -+ ‘ 53
x S8mab j; v ( a’ »? ) (53)
cos?y
1 3 S a’
= d 54
Vi 8mab fo i cos?y  sin®y 7 54
az— + b2 )
sin?
1 3 2 b2
= dy (55)
y,, 8mab j(; cos?y  sin*y V2
a? -t b2

where the integrals can readily be expressed in terms of
complete elliptic integrals of the first and second kinds.
Here a and b are the semimajor and semiminor axes of
the elliptical hole. The validity of (52) in this case is
obvious. Corresponding expressions can easily be obtained
for a circular hole, where ¢, =¢,,=2x

To complete this section we also give variational forms
for ¢,, and ¢, which can be used to obtain reasonably
accurate suscept1b1htles with only approximate values of



190
g(7) and (7). Specifically, we have
\ Jar[arg(Rg(FHK ()

— : (56)
¥ [ / d?xg(?)]
1 [ar [dr n(Fh(F)K(F.7)

Yo [ f d7yh(7)]2

where g(7)=g(x,y) and h(¥)=h(x, y) are trial func-
tions and where K(7, 7") is defined in (26). The equivalent
evaluation of the polarizability is obtained by using (52)
with the variational values of ¢! and ¢! obtained from
(56) and (57). If the boundary curve in the x, y plane is
defined by

(57)

p(x.v)=po (58)
then trial functions satisfying the proper edge conditions
can be taken to be

d 1/2
g(x.7) =5 (p—p(x. )" (59)

a 1/2
h(X-y)=5;(po—p(x,y))/- (60)

VI. SUMMARY

In Section II we showed that the ficlds inside a cavity
with a hole can be written in terms of a coupling integral
involving the tangential electric field in the plane of the
hole. For a hole whose dimensions are small compared to
the wavelength, this coupling integral was separated in
Section Il into an electric term, proportional to the (scalar)
polarizability of the hole, and a magnetic term, propor-
tional to the (vector) susceptibility of the hole.

In Sections IV and V we developed integral equations
for the determination of these “static” geometrical param-
eters. These equations can be solved exactly for circular
and elliptical shape (see, for example, [1] and [2]) but only
approximately for other shapes (see, for example [5]). In
separate work [6] we discuss in detail variational forms for
these parameters which can be used to obtain reasonably
accurate values of these parameters with only very approx-
imate trial functions.

Our main result is the derivation of what appears to be a
new relation between the electric polarizability and the
(diagonalized) magnetic susceptibility for a hole of general
shape, namely

1 1 1
—_——t—. (61)
X Y ¥y,
This relationship can also be stated as
x '=Tr(¢7Y) (62)

prior to diagonalization of :E
The validity of (61), which is readily confirmed for the
elliptical hole, was noted in that case by Kleinman and
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Senior [7]. They also quote approximate numerical results
for other shapes [8]-[10], which do not quite satisfy (61).
We believe that the derivation of (61) is correct for any
shape hole and therefore believe that the computed results
are somewhat less accurate than previously estimated.

APPENDIX

In Section III, we separated the coupling integral of (8)
into two terms, given in (14) and (15) and reproduced
here:

J0= Ry (O) [[dxdyE(x, )~ 1, (0) [ [ dxdy E,(x. y)
(A1)

Jl= hpy (())ffdxdyxEx(X, y)

" Jdx

8:;” (0) f f dxdyyE,(x, y)

ad

+

;’:x (O)f/dxdyxEy(x, y)

8hn1x
3 (O)ffdxdnyy(x, y).

(A2)

Here x = y =0 is an arbitrary “center” of the hole. If we
use the electrostatic approximation

E(X)=-v 0(%) (A3)

it is easy to show that
f/dxdyEx(x, y)= —¢dy¢)(boundary) =0 (A4)

since the electrostatic potential vanishes on the boundary.
Similarly

ffdxdyEy(x, y)=0 (AS)

//dxdnyx(x,y) =ffdxdyxEV(x,y) =0 (A6)

and, by an integration by parts,

f/dxdyxEx(x, ¥) =f/dxdnyy(X,Y)

=f/dxdy<1>(x,y). (A7)
We therefore can write, using (1),
dh ah
1_ my mx
n ( T )Offdxdwb(x, »)
= ke, (0) [ [ dxdy @ (x, »). (A8)

The electrostatic approximation to J,2 vanishes so that
we must consider the time-dependent behavior of E to
obtain a suitable expression for J2. If we start with the
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integrals

Mx=ffdxdnyz(x, y) My=ffdxdysz(x, y)
(A9)
and use (4), we find

a

-1 , dE, OJE
M =— ||dxdyx| == — ==
= [ ax yx( o ay) (A10)
1 dE, OJE
M, =— dyy| === - —=]|.
v jwuffdx yy( e 3y)

Integration by parts leads to

M, ]w,u-/ dxdyE,

(A11)

M,=- i;ffdkdyEx
(A12)
where we have used the fact that
(E dx+E,dy)=0 (A13)
on the boundary of the hole. Thus we find from (Al) that
T == jou[h, (0 M +h,,(0)M,]

=—jou [ [ dxdy H.(x, y)[ k. (0) +3h,,,(0)]. (A14)

It is clear from the symmetry in Fig. 2 that H,(x, y)is
the only nonvanishing component of H in the hole for
z=0. We then see from (A8) and (A14) that J,) will be
proportional to H 79 and that J! will be proportlonal to
E". We therefore write for, J, = Jo+ J.,

J, =k, x&" E"— jouh® -y - HY (A15)

where x and xp are the electric polarizability and magnetic
susceptibility of the hole. The quantity 1,!/ is treated as a
tensor because H” is not necessarily parallel to the sym-
metry directions of the hole. It was shown that we can
orient the x and y axes so that x[/ is diagonal, with
" components ¢, and ¢, in the x and y directions.
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